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1. PHYSICAL and MATHEMATICAL MODELLING of RADIAL POLYTRON 

1.1. Methods and outcomes of physical modelling. 

The physical modelling of polytrons (both radial, and axial) was fulfilled by 
excitation of mechanical resonant oscillations in rings of metal wire and fillet. 

The excitation of oscillations in rings was fulfilled by electromagnetic method by 
means of generator of signals of low frequency Г3-109. For manufacturing of rings the 
widespread materials were taken. A wire and fillet of carbon steels, which are used in 
different spring gears, and also, brass, copper and aluminium wire from the bill of rating 
of electrical industry. At excitation of oscillations in steel rings, the variable harmonic 
current from the generator was flowed through an electromagnet, in an air gap of which 
one small segment of the ring was placed. At excitation of oscillations in rings from 
non-magnetic materials, the variable harmonic current was flowed in the ring, and the 
small segment of the ring was placed in an air gap of permanent magnet. 

Besides, a series of experiences on excitation of resonant oscillations in the same 
rings by an only mechanical way was fulfilled. In these experiences an alternating 
current from the generator was flowed in the electromechanical vibrator, anchor of 
which one, in the form of mild hollow rod, was placed inside of a cylindrical coil. One 
end of anchor was placed inside the coil, and to its back the tablet of a high-coercive 
magnet was pasted. The second end of anchor acted from the coil and was supplied with 
a miniature clamp for attachment of investigated rings. 

At excitation of oscillations with the help of the electromechanical vibrator the 
polytrons with only odd frequency order (m = 3, 5, …) are modelling, since one node of 
polytron is connected with clamp. 

This series of experiences was fulfilled with the purpose of detection of effect of a 
way of excitation of oscillations on measured values of resonance frequencies of 
investigated rings. In outcome, the same values of resonance frequencies of odd 
polytrons were obtained precisely, as well as at excitation of oscillations by 
electromagnetic method. 

At realization of experiences with rings of a steel wire and a steel fillets its were 
compared resonance frequencies of rings of identical diameter, which were made of a 
steel wire of diameter 0.2 mm and of a steel fillet of thickness 0.2 mm and width 5 mm. 
Besides, the two-layer and three-layer rings minimized in a roll and welded by a spot 
welding in one place were made of a steel fillet. The resonance frequencies of single-
layer rings of a steel fillet have appeared little bit below, than resonance frequencies 
that of the frequency order m of wire rings. It is possible to explain this minor 
decreasing of frequencies by a more essential air resistance for a flat surface of a fillet 
and, arising thus, effect of an added mass. 
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As to resonance frequencies of one-, two- and three-layer rings of a steel fillet, 
they practically do not differ. Each layer in a ring behaves as an independent ring, and 
as the diameters of these layers-rings are almost peer, also resonance frequencies of 
them are indiscernible. However, width of resonant spikes in rings with miscellaneous 
number of layers is proportional to number of layers and this fact allows to compare 
mechanical oscillations in the ring-shaped forms to electrical oscillations in the radio 
schemes and to apply units of the theory of electrical oscillations. 

For approximated physical modelling of free polytrons, i.e. of polytrons with even 
frequency order only, the rings of a steel wire were set on four or three racks of a thin 
wire so that the nodes of resonance ring were placed on racks. The top ends of a wire 
racks were bent by a way character “φ”, that provided for ring a small radial backlash in 
nodes. In such a way, it was possible to reduce to minimum the influence of units of 
attachment on resonance frequencies of investigated rings. 

As a result of these experiences it was established, that the qualitative character of 
dependence of resonance frequencies of rings from the frequency order m remains 
invariable, but in a quantitative relation, resonance frequencies of free rings are lower, 
than identical frequencies of rings, which are fastened in one node. To explain this fact, 
it is possible, the rings, which are fastened in one node, have near this node an increased 
rigidity, which gives rise to increasing of resonance frequencies. This explanation still 
by such experimental fact is confirmed, that quantrons, directly outgoing from the 
fastened node, have smaller angular distance between nodes, than following behind 
them quantrons. 

In Fig.2 three pairs of experimental curves, which reflect the dependence of 
resonance frequencies from the frequency order for fastened rings (continuous lines) 
and free rings (dotted lines) are shown. 

As it is visible from Fig.2 the resonance frequency of ring and the frequency order 
m are connected by quite particular parabolic relation, and essentially depend on 
relation of diameter of a wire d to diameter of ring D. At rather small relation d/D, the 
frequencies become practically equal and, therefore, in calculations one frequency will 
be used only. 

The amplitude of radial oscillations of ring, to be exact to tell, amplitude of radial 
quantrons, also depend on the frequency order m, and the quantum character of this 
relation is quite obvious - the less angular distance between nodes, the should be and 
amplitude, at the same power of swing, made into ring. This relation has hyperbolic 
character and especially clearly appears at achievement of limit value of the radial 
amplitude, which correspond to the given frequency order m.  
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Fig. 2 

Graphic chart of resonance frequencies from the frequency order of free and 
fixed steel rings at ratio d/D equal: 4,56·10-3- upper pair of curves, 2,28·10-3 - 

middle pair of curves, 1,14·10-3- lower pair of curves. 

As to relation of radial amplitude to a power of swing, experimentally was 
established, that the curve of this relation is similar to an abrupt exponent with fast 
accessible limit. 

During experiments, the impact supply power of swing and step change its was 
applied also. At such ways of impact supply power of swing, the radial amplitude 
smoothly leaves the limit value, which corresponds to stationary mode of supply power 
of swing, but fast returns to value of this limit. 

And, at last, after the radial amplitude will reach the limit value, the further 
repeated increase of power input to the ring, does not influence value of limit amplitude 
at all, and the redundant power will be converted into heat and into energy of 
electromagnetic radiation with frequency, equal resonance frequency of oscillations of 
ring. 

The qualitative analysis of all fulfilled researches allows making following 
conclusions: 

1) A series of resonance frequencies of ring oscillator characterized by the 
frequency order m, essentially differs from similar relation for a linear harmonic 
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oscillator. Increase of resonance frequencies and increase of the frequency order m are 
connected by parabolic relation. 

2) The resonance frequencies of radial oscillations of a ring are linearly 
proportional to a longitudinal speed of elastic shift deformations in a ring, are linearly 
proportional to thickness of a ring in a radial direction, and are inversely proportional to 
a square of diameter of a ring.  

3) The amplitude of radial oscillations of ring has the upper energy limit, which 
one is connected with the frequency order m by hyperbolic relation and has discrete 
character.  

4) In the field of energies, which is lower than the energy limit, the radial 
amplitude of quantrons depends on a total energy of ring and is change exponentially. 
Probably, as in this area, the radial amplitude is change discretely, but necessarily is 
integer. 
 

1.2 Mathematical modelling of radial quantoide. 

At radial oscillations polytronic quantoide is arranged in one plane, therefore its 
equation the most conveniently to record in polar coordinates. The position of any point 
of radial quantoide is determined by six arguments - static diameter of polytron Ds, its 
frequency order m, radial amplitude order nr, polar angle φ of polar coordinates, 
frequency of resonant oscillations ν and time t 
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where:  ρ(m, nr, t, φ) - polar radius-vector from center of coordinates to point of 
quantoide, appropriated to a polar angle φ in the given instant t. At t = 0 radius-vector 
(1-1) describe the boundary quantoide. 

Length of the boundary quantoide is calculated by integration from 0 up to 2π 
under the formula 
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where:  ρ'(m,nr,φ) - first derivative of a radius-vector ρ(m, nr, t, φ) on the angle φ. 
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Each point of quantoide is characterized by one more angular parameter 
connected with polar angle φ. It is an angle between tangent to quantoide in the given 
point and normal to a polar radius-vector in this point. 
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Using the formula (1-4) and by expressing a tangent of an angle through its 
cosine, we shall receive other kind of the formula (1-2) 
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In frame of the formula (1-1) there are dynamic diameter of a radial polytron Dr 
and both amplitudes of points of quantoide – radial and tangential. And because of an 
asymmetry of amplitudes of external and internal points of quantoide, they need to be 
studied separately. 
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where:  
ap(m,nr,φ) – radial amplitude of external points of quantoide 
aq(m,nr,φ) – radial amplitude of internal points of quantoide 
τp(m,nr,φ) – tangential amplitude of external points of quantoide  
τq(m,nr,φ) – tangential amplitude of internal points of quantoide 
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In Fig.3 the geometrical constructions are fulfilled, which illustrate a principle of 

calculation of radial and tangential amplitudes and indicate to scale a ratio of the sizes 
in the polytron PT√2/3R. 
The angular displacements of points from its positions on static diameter are 
peer: 

φp= 2·lp(m,nr,φ)/Ds - φ     and    φq= φ - 2·lq(m,nr,φ)/Ds 
 
In Fig.4 the relations of radial and tangential amplitudes of a polytron PT√2/3R to 

a polar angle φ are adduced. The continuous lines (greasy and thin) concern to radial 
amplitudes, dotted lines (greasy and thin) - to tangential amplitudes. 
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Fig. 3 

Graphic explanations to a principle of calculation of radial and tangential 
amplitudes in polytron. The dotted line shows the static diameter of polytron. 
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Fig. 4 

Graphic chart of radial amplitudes (continuous lines) and tangential amplitudes 
(dotted lines) from a polar angle φ for boundary quantoide of polytron 

РТ√2/3R. 
The horizontal dotted line marks a position of static diameter of polytron. 
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At radial oscillations, the ends of an internal part of quantoide of one quantron 
pass through nodes into sectors, which belong to an external part of quantoide of 
adjacent quantron. Besides, the points commit also transitions from static diameter into 
dynamic one and back. The frequency of these transitions is twice higher than 
frequency of oscillations of quantoide. In outcome, there is a rather complex process of 
exchange of energy between external and internal halves of quantrons. 

Space between static and dynamic diameters of a polytron is named as a dynamic 
layer and is characterized by value, calculated under the formula 
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Thus, parameter dr is a double amplitude of the dynamic layer, which pulsating 
with doubled frequency. 

The total energy of oscillations of each point of quantoide is proportional to the 
sum of squares of its radial and tangential amplitudes. Energy of a point connected to its 
oscillations in a dynamic layer is so small, that practically does not influence on a total 
energy of a point. 
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In Fig.5 the curves, which evaluate relative values of a total energy of each 
external point of quantoide Ep(m,nr,φ) and of each internal point of quantoide 
Eq(m,nr,φ) depending on an angular position of this point in polytron PT√2/3R are 
shown. The horizontal dotted line marks relative value of energy of oscillations of this 
point in dynamic layer multiplied by 100. 
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Fig. 5 
Graphic chart of energy of oscillations of points of quantoide from a polar angle φ: 

heavy line - a total energy of external points of quantoide, 
light line - a total energy of internal points of quantoide. 

From Fig.5 it is visible, that near of nodes, the points of quantoide have minimum 
and practically constant energy. It testifies that these points of polytron move practically 
linearly. 

The formula (1-1) responds the condition of persistence of length of quantoide to 
accuracy within the 100-th shares of percent and, besides, has two all-important 
properties, namely: 

1) The area each radial quantron is divided by the line of the circle of dynamic 
diameter into two absolutely equal parts; 

2) If the amplitude order of polytron is preset by the harmonic series 
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quantrons, appropriate to the given frequency order. 
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The sum of  areas of all quantrons is named as the radial dynamic area of polytron 
and in m times more than area of one radial quantron: 
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In Fig.6 the continuous lines show two quantoides of polytron PTnr/4R with the 
amplitude order nr = 2  in instants biased on half-cycle of frequency of natural 
oscillation. Dotted lines show the same quantoides, but with the amplitude order nr = 2. 

The experience displays, that the oscillations with amplitudes, which are shown 
by dotted lines, are impracticable. Sooner there will be frustration of resonant 
oscillations, than the amplitude will reach value close to nr ≈ 1,5. 

The given experimental fact indicates that in a mode of stable oscillations, the 
curvature of quantoide cannot receive negative values. Nevertheless, the condition of 
persistence of length of quantoide is executed and at such critical amplitudes. 
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Fig. 6 

The configurations of boundary quantoides of polytron РТnr/4R with the 
amplitude orders nr = 2  and nr = 2, out-of-phase on halfcycle of resonant 

oscillations. 
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1.3 Mathematical modelling of resonance frequencies. 

The creation of the formula for resonance frequencies of polytron is complicated 
by that circumstance, that, according to the energetic postulate, quantoide has not 
thickness, and, therefore, should not have such mechanical characteristic, as rigidity. In 
real experiments, the effect of influence of thickness of ring on values of resonance 
frequencies is most essential, since the thickness of ring are connected with its mass and 
rigidity. In order decrease a rigidity of rings it is possible, basically, at the expense of 
decreasing relation of diameter of wire to diameter of ring. The value, which was 
reached in experiments, equal ~10-3. At values of this relation (2-3)·10-3 and lower the 
resonance frequencies of radial and axial vibrations of rings coincide in a rather broad 
interval of frequencies. This circumstance has helped to foresee frame of the formula 
for resonance frequencies of polytron and to calculate a series of factors, included in it. 

The empirical formula for calculation of resonance frequencies of rings from 
materials of round cross-section has following frame 
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where    v – longitudinal speed of spread of elastic shift deformations in a ring  

    d – diameter of a material of a ring 

    D – diameter of a ring (in this case static diameter of polytron) 

    km – factor, which is taking into account linear changes of the characteristics of 
rings (such, for example, as change of a modulus of elasticity under bending wires and 
respective alteration of speed v). 

    kn – factor, which is taking into account non-linear changes of the 
characteristics of rings (such, for example, as change of rigidity depending on wire 
diameter, structure of material and air resistance). 

The factors km for radial and axial vibrations have small difference dependent on 
rigidity of material of a ring in that and the other direction. At decreasing of rigidity, 
whether it is at the expense of reduction of relation d/D or at the expense of selection of 
a softer material, the correction km aims at null. 
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The frequency order of polytrons has low limit m = 3 for polytrons fixed in one 
node, and m = 4 for free polytrons. Therefore, factor kn cannot exceed indicated values 
for these types of polytrons. Differently, frequency νv will become a complex number. 

The special case is the value of the frequency order m = 2. In this case, on length 
of quantoide the only one wave has place and origin of resonance is theoretically 
probably. However, observed in experiments with metal rings the resonant oscillations 
with m = 2, represent itself oscillations of the center of mass of ring relative to the 
fastening point of ring. Thus, diameter of ring does not change, i.e. dynamic diameter is 
absent. Frequency of oscillations of ring depends on the mass and rigidity of all units of 
construction in fastening point of ring. Therefore, measured resonance frequency of ring 
at m = 2, can deviate from frequency, which appropriate under formula (1-13). 

Nevertheless, the resonance at m = 2 in any kind exists and, therefore, for 
maximum value of factor, it is necessary to accept kn max = 2. 

Thus, the lower resonance frequency of polytron is arranged in frequency band, 
which is differing twice: 

2
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ν

=⋅
⋅π⋅
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where:     kn = 2  for  νmin  and  kn = 0  for νmax 

Taking into account this circumstance, it is possible to express a resonance 
frequency of polytron through some generalized factor ko, the value which one lays 
within the limits from 1 up to 2. 
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The factor ko in this case can be some function of the frequency and amplitude 
orders of polytron. 

1.4  Calculation of energy of oscillations of radial quantoide. 

According to classic definition, the mechanical energy of oscillations of a point is 
peer to half of product of mass of a point on a square of cyclical frequency and on a 
square of amplitude of a point. Mass of a point in our case is mass of an elementary 
section of a ring. By expressing diameter of a wire d through diameter of a ring Ds and 
factor kd  (d = kd·Ds) and by executing indispensable transformations, we shall receive 
following expression for elementary mass 
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where:     β – density of material of a ring.  
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The cyclical frequency of oscillations of a ring is peer  
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The integral expressions for all three energies of quantoide look like: 
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Where     
6

DM
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s

s
⋅π⋅β

=  – the mass of a sphere of static diameter  

The integrals Jρ(m,nr) and Jt(m,nr) determine the type of connection of radial 
and tangential energies of polytron with its geometry and sizes, in particular, with the 
dynamic area of radial polytron Qr. 

( ) ∫

π

ρ φ∂
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ φ⋅

⋅−+⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ φ⋅

⋅+⋅−
π⋅

=
m

0

2
r

2
r

r 2
mcos

m
n1

2
mcos

m
n12

m
4n,mJ  

 (1-20) 

( )
( ) ( )

∫

π

φ∂
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ φ⋅
−φ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
φ−

φ⋅
=

m

0 s

rq2

s

rp2
rt D

,n,ml2
tg

D
,n,ml2

tgn,mJ   

 (1-21) 
In Fig.7 the curves of functional dependences of all three energies of polytron 

from the frequency order m are adduced. By a heavy line is marked of a radial 
component of energy, light line - a tangential component and dotted line - energy of a 
dynamic layer, and, for demonstrating of curvature of the last, its values are given with 
tenfold increase. The mugs mark a curve of functional dependence of the dynamic area 
Qr of polytron from the frequency order. 
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Fig. 7 
Graphic chart of radial energy (heavy line), tangential energy (light line) and 
energy of dynamic layer (dotted line) of polytron from the frequency order m. 
The mugs mark relation of the dynamic area of polytron from m, reduced to a 

scale of a figure. 

As it is visible from Fig.7, only tangential energy of polytron has precise 
connection with its dynamic area. The radial energy practically does not depend on the 
frequency order of polytron, and the energy of dynamic layer is so small, that it can be 
leave out at quality evaluation of the obtained outcomes. 

The integrals Jρ(m,nr) and Jt(m,nr) can be substituted by more simple 
algebraic expressions, by keeping rather high accuracy of calculations. The views of 
these expressions are: 
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By substituting in expressions (1-17) and (1-18) integrals Jρ(m,nr) and Jt(m,nr) 
by their approximated expressions, and by designating common for all three energies 
the part as 
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2
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2
s
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⋅⋅⋅π

=   (1-24) 

let's receive the below mentioned formulas for further research of energies 
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The total energy of oscillations of quantoide is peer to the sum of all three 
energies 

( ) ( ) ( ) ( )rdrtrrr nm,wnm,wnm,wnm,w ++=  (1-28) 

In Fig.8 the relation of a total energy of radial polytron to the frequency order is 
shown at two values of the amplitude order. As it is follows from the diagrams in Fig.8, 
the total energy of oscillations of polytron is very responsive to the amplitude order 
(approximately under geometrical progression). But especially paradoxical it seems the 
fall of the total energy with increasing of the frequency order. This implies that at radial 
oscillations for quantoide higher frequencies are expedient energetically. The reason of 
such character of change of the total energy is hidden in different distribution of radial 
and tangential component of energy lengthwise of quantoide, as causes the reallocation 
of energies with change of the frequency order of polytron. 

In Table 1 the relations of radial and tangential energy of quantoide and energy of 
dynamic layer to its full oscillatory energy are adduced at two values of the frequency 
order of polytron m = 2 and m = 32. 

Table 1 
Indication m=2,   nr=√2 m=32,   nr=√2 

wr(m,nr) / w(m,nr) 50.765% 98.609% 
wt(m,nr) / w(m,nr) 49.098% 0.372% 

wd(m,nr) / w(m,nr) 0.137% 1.019% 
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Fig. 8 

Graphic chart of a total energy of radial polytron to the frequency order m at 
different values of the amplitude order. 
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Fig. 9 

Graphic chart of radial energy of polytron from the frequency order m. 
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In Fig.9 the curves of relation of radial components of energy from the frequency 
order is shown separately. As it is visible from Fig.9, at initial values of the frequency 
order, radial polytron has the energetic trap. The radial component of energy of polytron 
at frequency, which appropriate to the frequency order m = 2, has the minimum, and, 
apparently, its level determines a short-wave boundary of radiation. At obtaining of 
portion of energy from the outside, polytron passes into the higher energy level on the 
curve wr(m,nr), but at the same time it should appear on a much lower energy level on 
the curve wt(m,nr). The energy, which correspond to a difference of the frequency 
orders on the curve wt(m,nr), should be by any way thrown out from polytron. 
Customary, we shall tell so, the vectorial conversion of one energy to other is 
represented improbable. At first, in distribution of radial and tangential energies of 
quantoide there is no proportionality. And, secondly, the vectors of radial and tangential 
amplitudes always are orthogonally related, and their maxima are carried on the angle  
π/m. To admix radial and tangential energy of polytron, it is as good as to admix water 
and oil. There should be some intermediate gear of interaction between these 
components. Such, for example, as pressure. Then it is possible to explain process of let 
out from polytron of excesses of tangential energy more or less probable. The excess of 
radial energy (water) presses on the reserve of tangential energy (oil) and instigates its 
let out from polytron. 

The development of these events happen in full conformity to the formulas (1-25) 
and (1-26). Radial and tangential energies are proportional to the fourth degree of the 
amplitude order. Therefore, amplitude order is a link between them and provides 
balance of radial and tangential energies in polytron. The radial energy, except for the 
lower frequencies, almost does not depend on the frequency order, whereas the 
tangential energy is inversely proportional of the second degree of the frequency order. 
Therefore, let out of energy should happen to the help of tangential oscillations, i.e. on 
tangent to quantoide and in points with maximum tangential amplitude, i.e. from nodes 
of polytron. This process will be considered in details after comparison of energy 
parameters of radial and axial polytrons. 

The research of the equation of radial components of energy has shown, that at the 
small amplitude orders, with decreasing of the amplitude order the depth of the 
enerrgetic trap decreases. At some value of the amplitude order, the energetic trap 
disappears, and the curve of radial energy by a jump is degenerated into a practically 
straight horizontal line.  

Assigning of the equation (1-17) in a more roughly approximated kind, than the 
formula (1-25), gives the same outcome at all values of the amplitude order. 
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