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2. PHYSICAL and MATHEMATICAL MODELLING of AXIAL POLYTRON 

2.1 Methods and outcomes of physical modelling. 
The axial vibrations in rings were excited by the same ways, as well as radial. 

Unique difference was in direction of magnetic field of permanent magnet (or of 
electromagnet), in an air gap of which one the segment of the ring was placed. 

The resonance frequencies of axial vibrations, at small values of relation of 
diameter of the wire to diameter of the ring, have the same values, as well as at radial 
oscillations. The small differences arise at very low frequencies (up to 10ГЦ.) and at 
high frequencies (more than 400ГЦ.). In the first case the basic error is introduced by 
the mechanical factors, such as a way of fastening of rings and by their vertical or 
horizontal arrangement. In the second case the error is accumulated because of 
increasing rigidity of rings and increasing absolute error of metering equipment at more 
high frequencies. 

As to amplitudes of axial vibrations of rings, rather essential differences from 
radial oscillations here are watched. 

At first, the axial amplitude, at identical power input of swing, is significant more 
than radial. 

Secondly, the axial amplitude has the precisely expressed upper bound, which has 
allowed to use in equations of axial vibrations narrower range of values of the axial 
amplitude order na. 

Thirdly, lower than each value of resonance frequency there is an area, within of 
which one, the amplitude of axial vibrations has anomalous values. 

In experiment it looks like. 
At minimum of power build-up of oscillation and at motion on the scale of 

frequencies, from lower to upper, find any resonance frequency. Then the power is 
augmented and amplitude is drive to maximum value, so that to the ring the superfluous 
power is not supply. After, the frequency of the feeding generator is slowly diminished. 

At that the smooth increasing of amplitude (approximately double, as contrasted 
to by maximal amplitude in the point of excitation of the resonance) is watched and 
then, at a some value of a driving frequency, the oscillations sharply cease. The 
decreasing of frequency makes 5÷7%. To excite oscillations on this "the point of 
breaking" at the expense of increase of power swing it is impossible. Besides, at the 
frequency, which appropriate to anomalous amplitude of axial vibrations, in character 
of oscillations of quantoide there is an instability and tendency to pass to radial 
oscillations. Or, in other words, at anomalous amplitude of axial vibrations of quantoide 
the change of polarization of amplitude begins. 
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And, in fourth, the axial vibrations of quantoide have not tangential amplitude. If 
to express absolutely precisely, the motion of points of quantoide at any moment of time 
is tangential, since happens, practically, on the sphere of axial dynamic diameter. But, at 
derivation of equations of energy of oscillations, this motion should be decomposed into 
axial and radial components. Therefore, the tangential amplitude, as such, in equations 
is absent. 

Earlier it was mentioned, that the relations of radial and axial amplitudes to the 
frequency order m have hyperbolic character. 

In connection with that, the marginal axial amplitudes are expressed more 
precisely, than radial, in experiment it was possible enough precisely to measure their 
values and to confirm hyperbolic relation of amplitude from m. 

In Fig.10 two curves, which reflect this relation are submitted. The small circles 
mark the values of normal amplitude, the small squares – of anomalous. The continuous 
lines show relations of amplitudes to the frequency order retrieved under the formula of 
axial quantoide, which one will be adduced in the following paragraph. 
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Fig. 10 

Graphic chart of normal zn and anomalous za axial amplitudes from the 
frequency order of polytron. 

In Fig.11 the relations of resonance frequencies of polytron to its frequency order 
are shown. The mugs mark values of frequencies obtained in experiment, the dotted line 
shows relation of resonance frequencies to the frequency order, obtained under the 
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formula (1-13) with the factors km=0.4 and kn=0. The continuous line shows the same 
relation, obtained under the formula (1-14) with the generalized factor ko=2. 

As it is visible from Fig.11, the curve of resonance frequencies of polytron, 
obtained under the formula (1-14) passes hardly above experimental curve and in 
parallel by last. The small reduction of the experimental curve is explained by 
mechanical losses of power at motion of a wire in air and, arising of effect of an added 
mass. 

At further mathematical modelling of radial and axial polytrons the obtained value 
of the generalized frequency factor ko=2 will be used. 
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Fig. 11 

Graphic chart of resonance frequencies of oscillations of quantoide from the 
frequency order of polytron. 

 

2.2 Mathematical modelling of axial quantoide 
As against radial polytron, where the polar radius-vector ρ(m,nr,t,φ) is used, in 

axial polytron the setting of points of quantoide in time and in space is made with the 
help of axial amplitude z(m,na,t,φ). Actually, the process happens in spatial polar 
coordinates, but because of, the axial amplitude is connected by particular relation with 
polar angle φ, the necessity of application of polar distance of spatial polar coordinates 
is cease. Therefore, the equation of z-amplitude and of dynamic diameter are sufficient 
for the setting of points of axial quantoide. 
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Expressions for dynamic diameter and for amplitude of boundary axial quantoide, 
i.e. at  t = 0, receive a view 
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The first derivative of axial amplitude on polar angle φ is described by the 
formula 
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The projection of axial quantoide on the plane of polar coordinates is described by 
the end of radius-vector ρa(m,na,φ) 
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The first derivative of radius-vector ρa(m,na,φ) on angle φ represents very 
cumbersome expression, therefore its denotation here is resulted only 

( ) ( )
φ∂

φρ∂
=φρ

,n,m,n,m' aa
aa    (2-6) 

Length of boundary axial quantoide is calculated by integration from 0 up to 2π 
under the formula 
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The condition of persistence of length of quantoide at calculation under the 
formula (2-7) is maintained approximately with the same accuracy, as for radial 
quantoide. 

Radial component of oscillations of axial quantoide is calculated as a difference 
between half of dynamic diameter and radius-vector ρa(m,na,φ)  
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The frequency of oscillations of radial components is twice higher, than frequency 
of oscillations of quantoide, as well as frequency of oscillations of quantoide in 
dynamic layer. 

The axial dynamic layer represents a hollow sphere with wall thickness 
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In axial quantron, as the dynamic area, the area between the line of a circle of 
dynamic diameter on the plane of polar coordinates and line, circumscribed by the end 
of the radius-vector ρa(m,na,φ), is selected. It allows comparing the dynamic areas of 
radial and axial polytrons 
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The integral in equation (2-10) is enough exactly calculated with the help of the 
following algebraic expression 
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After replacement of this integral by expression (2-11), formula of the dynamic 
area of axial quantron are gained by the view 
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Accordingly, the whole dynamic area of axial polytron is equal 
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The comparison of the formula (2-13) with the formula for the dynamic area of 
radial polytron (1-12) gives approximated connection 
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The qualitative party of the ratio (2-14) is, that at axial vibrations there is a 
releaser for transfers them into radial oscillations. And, with reduction of the frequency 
order the intensity of this gear increases, as is watched in experiment. Retroactive this 
gear has not, as at radial oscillations of quantoide axial component is absent and without 
effect from the outside to appear cannot. 

2.3 Calculation of energy of oscillations axial quantoide 
By taking advantage methods and equations, which applied in paragraph 1.4 we 

shall record equations for three energies of axial oscillations of quantoide. 
Axial component of energy of axial polytron 
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By substituting in the formula (2-15) integral with its approximated algebraic 
expression (2-11) we shall receive more convenient formula for qualitative analysis 
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Radial component of energy of axial polytron 
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The integral (2-18) also has rather exact algebraic replacement 
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Substituting in the formula (2-17) by replacement of integral from (2-19) we shall 
receive 
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Energy of oscillations of dynamic layer 
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The total energy of resonant oscillations of axial polytron is equal 
( ) ( ) ( ) ( )adaraza n,mun,mun,mun,mu ++=   (2-22) 
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Fig. 12 

Graphic chart of three components of energy of resonant oscillations of 
quantoide from the frequency order of axial polytron: 

Solid heavy line - axial component of energy. Solid light line - radial component 
of energy. Dotted line - energy of dynamic layer. 

 
In Fig.12 all three components of energy of axial polytron are submitted. And, 

because of small values of energy of dynamic layer, its values are multiplied by 10. 
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In table 2 the relation of each of three components to the total energy of polytron 
is adduced at values of the frequency order m = 2 and m = 32. 

Table 2 

Indication m=2,   nr=√2 m=32,   nr=√2 

uz(m,na) / u(m,na) 73.01% 94.742% 

ur(m,na) / u(m,na) 23.558% 0.0003 % 

ud(m,na) / u(m,na) 3.132% 5.258% 
 
The functions, which reflect relations of different components of energy of the 

radial polytron (Fig.7) and of the axial polytron (Fig.12), are concerned to the same 
object. In this case, model of polytron is the ring of diameter Ds = 170mm, made from a 
brass wire of diameter d = 0.27mm. Values of energy on coordinate axises in Figs.7 and 
12 are given in joules. The particular ratio between energies of radial and axial 
polytrons does not exist. As it is visible from the reduced charts, energy of radial and 
axial polytrons, at identical value of the amplitude orders differ approximately on the 
order. At decreasing of amplitudes, this difference increases in geometrical progression. 
Therefore, the role of axial polytron should differ from the role of radial polytron. Axial 
polytron can be the very effective storage of energy. 

In Fig.13 the total energies of axial polytron are shown at different amplitude 
orders. Energy of axial polytron at the frequency orders m = 4 and higher almost 
completely consists of z-component. The dynamic layer of axial polytron is volumetric 
and consequently has considerably large power consumption, than dynamic layer of 
radial polytron. 

Both radial and axial polytrons energetically is more expedient to be on high 
resonance frequencies. Therefore, by equating the radial component of energy of radial 
polytron under the formula (1-25а) to the axial component of energy of axial polytron 
under the formula  (2-16), it is possible to find equilibrium ratio between the amplitude 
orders of polytrons at high value of the frequency order. 

This ratio has the kind 
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Fig. 13 

Graphic chart of a total energy of axial polytron from the frequency order m at 
different values of the amplitude order. 

 
At such ratio of amplitude orders, energies of polytrons, at high resonance 

frequencies, are compared and in experience are watched left-spiral and right-spiral 
volumetric polytrons. Amplitude of oscillations in such polytrons changes polarization 
at transition from one point of quantoide to other. The angle of polarization in each 
point has sensitive reaction to frequency drift of energy swing, but does not react almost 
to its level.  

At identical width of dynamic layers, ratio of the amplitude orders of axial and 
radial polytrons a little diverse 
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2.4  Function of centripetal acceleration. 
Pursuant to energy postulate, ergoline has the translational component, equal to 

speed of light. The role of this component consists in cyclical carrying over lengthways 
of quantoide of energy of lateral oscillations, i.e. of radial components of energy. Or, in 
other words, translational component of ergoline controls by phase of radial oscillations 
in each point of quantoide. 
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The value of translational component of ergoline is constant and represents the 
reserve of potential energy of polytron. 

To any motion on a curve trajectory is accompany a centripetal acceleration, 
which one is calculated, as product of a square of speed on curvature of trajectory of 
motion in the given point. 

At changeover from mechanical oscillations of wire rings to oscillations of real 
polytron, in aforecited equations of energy, the factor kd has sense of rigidity or 
elasticity of quantoide. Thus, the factor kd is a function of curvature of quantoide and 
depends on angle φ, and time t. 

The formulas for calculation of curvature K(m,nr,φ) of boundary quantoide in 
its any point and centripetal acceleration gk(m,nr,φ) of ergoline in the given point are 
adduced below 
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where  ρ"(m,nr,φ) – second derivative of the radius-vector ρ(m,nr,φ) on the angle 
φ. 

The centripetal acceleration of ergoline in instants, when quantoide takes position 
of the circle of static diameter, is calculated under the simple formula 
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In all equations for energies of polytrons (formulas 1-25, 1-26, 1-27, 2-16, 2-20, 
2-21) there is the product wo·(kd)4. By expressing the factor kd through its basic values 
of d and Ds we shall receive at v = c 
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Thus, the centripetal acceleration is included in equations for all energies of 
polytrons and expresses elasticity of quantoide. As against the radial polytron, the 
quantoide of axial polytron has variable curvature, which is directed perpendicularly to 
the direction of constant component of the centripetal acceleration.The value of 
centripetal acceleration can be serve as characteristic of gravitational properties of 
polytrons. 


